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\$\beginggroup\$	Recently	I	started	reading	a	book	about	an	introduction	to	electrical	circuits.	Currently,	I	am	trying	to	learn	the	basic	network	topology	needed	to	solve	the	exercises	more	efficiently.	To	understand	where	I	am	wrong	I	will	describe	the	circuit	you	see	below	in	topological	terms:	BRANCHES	This	circuit	has	5	branches:	3	resistors.	1
Source	of	voltage.	1	Power	source.	NODES	This	circuit	has	3	nodes:	Node	a	where	R1	and	V1	are	connected.	Node	b	where	R2,	R3	and	I1	are	connected	via	cables.	Node	c	where	V1,	R2,	R3	and	I1	are	connected	via	cables.	MESHES	This	circuit	has	2	meshes:	abca.	mesh	created	between	R3	and	I1.	So,	if	the	above	are	correct,	then	according	to	the
basic	theorem	of	network	topology:	$$b=l+n-1	5	=	2	+	3	-	1	5	=	4	$$	which	is	obviously	not	correct.	Where	am	I	wrong?Simulate	this	circuit	–	Scheme	created	with	CircuitLab	2	Shape	taken	by	the	network	of	interconnections	of	a	circuit	The	topology	of	an	electronic	circuit	is	the	shape	taken	by	the	network	of	interconnections	of	the	circuit
components.	Specific	values	or	different	assessments	of	components	are	considered	to	be	part	of	the	same	topology.	Topology	has	nothing	to	do	with	the	physical	arrangement	of	the	components	of	a	circuit,	nor	with	their	position	on	a	circuit	diagram;	similar	to	the	mathematical	concept	of	topology,	it	deals	only	with	the	connections	between	the
components.	There	can	be	many	physical	layouts	and	circuit	diagrams	that	all	correspond	to	the	same	topology.	Strictly	speaking,	replacing	a	component	with	a	completely	different	type	is	always	the	same	topology.	In	some	contexts,	however,	these	can	be	loosely	described	as	different	topologies.	For	example,	exchanging	inductors	and	capacitors	in
a	low-pass	filter	results	in	a	high-pass	filter.	These	could	be	described	as	high-pass	and	low-pass	topologies	even	if	the	network	topology	is	identical.	A	more	correct	term	for	these	object	classes	(i.e.	a	network	where	the	component	type	is	specified	but	not	the	absolute	value)	is	network	prototype.	Electronic	network	topology	is	related	to
mathematical	topology,	especially	for	networks	containing	only	two	terminal	devices,	circuit	topology	can	be	seen	as	an	application	of	graph	theory.	In	a	network	analysis	of	such	a	circuit	from	a	topological	point	of	view,	the	network	nodes	are	the	vertices	of	graph	theory	and	the	network	branches	are	the	edges	of	graph	theory.	Standard	graph	theory
can	be	extended	to	active	components	and	multi-terminal	devices	such	as	integrated	circuits.	The	graphs	can	also	be	used	in	the	analysis	of	infinite	networks.	Circuit	diagrams	The	circuit	diagrams	in	this	article	follow	the	usual	conventions	of	electronics;[1]	the	lines	represent	the	conductors,	the	small	filled	circles	represent	conductor	junctions,	the
small	open	circles	represent	the	terminals	for	the	connection	with	the	outside	world.	In	most	cases	impediments	are	represented	by	A	practical	circuit	diagram	would	use	specific	symbols	for	resistors,	inductors,	capacitors	etc.,	but	the	topology	does	not	deal	with	the	type	of	component	in	the	network,	so	the	general	impedance	symbol	was	used.	The
Graph	Theory	section	of	this	article	provides	an	alternative	method	of	representing	networks.	Topology	Names	Many	topology	names	refer	to	their	appearance	when	drawn	diagrammatically.	Most	circuits	can	be	designed	in	various	ways	and	as	a	result	has	a	variety	of	names.	For	example,	the	three	circuits	shown	in	Figure	1.1	all	look	different	but
have	identical	topologies.[2]	Figure	1.1.	The	topologies	T,	Y,	and	Star	are	all	identical.	This	example	also	demonstrates	a	common	convention	of	naming	topologies	according	to	a	letter	of	the	alphabet	to	which	they	have	a	resemblance.	Letters	of	the	Greek	alphabet	can	also	be	used	in	this	way,	e.g.	Ã©	(pi)	topology	and	Ã©	(delta).	Serial	and	parallel
topologies	For	a	network	with	two	branches,	only	two	topologies	are	possible:	serial	and	parallel.	Figure	1.2.	Serial	and	parallel	topologies	with	two	branches	Even	for	these	simpler	topologies,	there	are	variations	in	the	way	the	circuit	can	be	presented.	Figure	1.3.	All	these	topologies	are	identical.	Series	topology	is	a	generic	name.	The	voltage
divider	or	potential	divider	is	used	for	circuits	of	this	purpose.	Section	L	is	a	common	name	for	topology	in	filter	design.	For	a	network	with	three	branches	there	are	four	possible	topologies;	Figure	1.4.	Series	and	parallel	topologies	with	three	branches	Note	that	the	parallel	series	topology	is	another	representation	of	the	delta	topology	discussed
below.	You	can	continue	to	build	serial	and	parallel	topologies	with	an	ever-increasing	number	of	infinite	branches.	The	number	of	unique	topologies	obtainable	from	n	branches	is	2n-1.	The	total	number	of	unique	topologies	achievable	with	no	more	than	n	branches	is	2n-1.[3]	Topologies	Y	and	Ã©Â¦	Figure	1.5.	Y	and	Ã©Â¢	topologies	Y	and	Ã¢¢
topologies	are	important	topologies	in	linear	network	analysis,	as	they	are	the	simplest	three-terminal	networks	possible.	For	linear	circuits	a	Y	transform	is	available.	This	transformation	is	important	because	there	are	some	networks	that	cannot	be	analysed	in	terms	of	series	and	parallel	combinations.	These	networks	often	originate	in	three-phase
power	circuits	as	they	are	the	two	most	common	topologies	for	three-phase	windings	of	motors	or	transformers.	Figure	1.6An	example	of	this	is	the	network	in	Figure	1.6,	which	consists	of	a	Y	network	connected	parallel	to	a	network	Ã©Â¢.	Let’s	say	you	want	to	calculate	the	impedance	between	two	network	nodes.	In	many	networks,	this	can	be
done	by	applying	the	rules	for	the	combination	of	serial	or	parallel	impedances.	This	is	however	not	possible	in	this	case,	where	the	Y-I-T	transformation	is	in	addition	to	the	series	and	parallel	rules.[4]	Topology	Y	is	also	called	star	topology.	However,	the	topology	of	stars	can	also	refer	to	the	more	general	case	of	many	branches	connected	to	the	same
node	rather	than	just	three.	[5]	See	also:	Star	Transformation	Simple	Filter	Topologies	Main	article:	Electronic	Filter	Topology	Figure	1.7	Common	Balanced	and	Unbalanced	Filter	Topologies	The	topologies	shown	in	Figure	1.7	are	commonly	used	for	filter	and	attenuator	drawings.	Section	L	is	the	topology	identical	to	the	potential	topology	of	the
divisor.	Section	T	is	topology	identical	to	topology	Y.	Section	II	is	the	topology	identical	to	the	topology	Î.	All	of	these	topologies	can	be	seen	as	a	short	section	of	a	scale	topology.	Longer	sections	would	normally	be	described	as	scale	topology.	These	types	of	circuits	are	commonly	analysed	and	characterized	by	a	two-port	network.	[6]	Bridge	topology
Main	article:	Bridge	Circuit	Figure	1.8	Bridge	topology	is	an	important	topology	with	many	uses	in	both	linear	and	non-linear	applications,	including,	but	not	limited	to,	the	bridge	straightener,	the	Wheatstone	bridge,	and	the	lattice	phase	equalizer.	There	are	several	ways	in	which	the	bridge	topology	is	rendered	in	circuit	diagrams.	The	first
rendering	in	figure	1.8	is	the	traditional	representation	of	a	bridge	circuit.	The	second	rendering	clearly	shows	the	equivalence	between	the	bridge	topology	and	a	topology	derived	from	serial	and	parallel	combinations.	The	third	rendering	is	more	commonly	known	as	reticular	topology.	It	is	not	so	obvious	that	this	is	topologically	equivalent.	You	can
see	that	this	is	really	so	by	displaying	the	top	left	node	moved	to	the	right	of	the	top	right	node.	Figure	1.9	Bridge	Circuit	with	Connection	Output	Load	shown	It	is	normal	to	call	a	network	bridge	topology	only	if	it	is	used	as	a	two-port	network	with	the	input	and	output	ports,	each	consisting	of	a	pair	of	diagonally	opposite	nodes.	The	topology	of	the
box	in	Figure	1.7	can	be	seen	to	be	identical	to	the	topology	of	the	bridge,	but	in	the	case	of	the	filter	the	entrance	and	exit	ports	are	each	a	couple	of	adjacent	nodes.	Sometimes	the	load	component	(or	null	indication)	on	the	output	port	of	the	bridge	will	be	included	in	the	bridge	topology	as	shown	in	Figure	1.9.	[7]	Bridged	T	and	twin-T	topologies
Figure	1.10	Bridged	T	topology	is	derived	from	the	bridge	topology	in	a	way	explained	in	the	Zobel	Network	article.	There	are	many	derived	topologies	also	discussed	in	the	same	article.	Figure	1.11	There	is	also	a	twin-T	topology	which	has	practical	applications	where	it	is	desirable	to	have	the	input	and	output	share	a	common	terminal	(ground).
This	may	be,	for	example,	because	the	input	and	output	connections	are	made	with	coaxial	topology.	Connecting	an	input	and	output	terminal	together	is	not	allowed	with	the	normal	bridge	topology	and	for	this	reason	Twin-T	is	used	where	a	bridge	otherwise	used	for	balance	measurement	applications	or	null.	The	topology	is	also	used	in	the	twin-T
oscillator	as	a	sine	wave	generator.	The	lower	part	of	figure	1.11	shows	the	twin-T	redrawn	topology	to	emphasisewith	bridge	topology.[8]	Infinite	topologies	Scale	topology	can	be	extended	without	limits	and	is	widely	used	in	filter	projects.	There	are	many	variants	on	the	topology	of	scales,	some	of	which	are	discussed	in	the	articles	on	the	topology
of	electronic	filters	and	composite	image	filters.	Figure	1.13.	Anti-scale	topology	The	balanced	shape	of	the	scale	topology	can	be	considered	as	the	side	graph	of	a	prism	of	arbitrary	order.	The	side	of	an	antiprism	forms	a	topology	which,	in	this	sense,	is	an	anti-scale.	Anti-scale	topology	is	applied	in	voltage	multiplier	circuits,	particularly	in	the
Cockcroft-Walton	generator.	There	is	also	a	full-wave	version	of	the	Cockcroft-Walton	generator	which	uses	a	double	anti-scale	topology.[9]	Infinite	topologies	can	also	be	formed	by	multiple	cascading	sections	of	some	other	simple	topology,	such	as	lattice	or	T-bridge	sections.	These	infinite	chains	of	lattice	sections	occur	in	teleanalysis.	and	in
artificial	simulation	of	transmission	lines,	but	are	rarely	used	as	practical	circuit	construction.[10]	Components	with	More	than	Two	Terminals	Circuits	containing	components	with	three	or	more	terminals	greatly	increase	the	number	of	possible	topologies.	In	contrast,	the	number	of	different	circuits	represented	by	a	topology	decreases	and	in	many
cases	the	circuit	is	easily	recognizable	by	the	topology	even	when	specific	components	are	not	identified.	Figure	1.14.	Basic	amplifier	topology	as	a	common	bipolar	transistor	transistor	amplifier	Figure	1.15.	Balanced	amplifier	like	a	long	tail	torque	amplifier	In	the	case	of	more	complex	circuits,	the	description	can	proceed	by	specifying	a	transfer
function	between	the	network	ports	rather	than	the	component	topology.[	11]	Graph	Theory	Graph	theory	is	the	branch	of	mathematics	that	deals	with	graphs.	In	network	analysis,	graphs	are	widely	used	to	represent	a	network	being	analyzed.	The	graph	of	a	network	captures	only	some	aspects	of	a	network;	those	related	to	its	connectivity,	or,	in
other	words,	its	topology.	This	can	be	a	useful	representation	and	generalization	of	a	network	since	many	network	equations	are	invariant	between	networks	with	the	same	topology.	This	includes	equations	derived	from	Kirchhoff’s	laws	and	Tellegen’s	theorem.[12]	History	Graph	theory	has	been	used	in	the	analysis	of	linear	and	passive	networks
almost	from	the	time	Kirchhoff’s	laws	were	formulated.	Gustav	Kirchhoff	himself,	in	1847,	used	graphs	as	an	abstract	representation	of	a	network	in	his	analysis	of	resistive	circuits.[13]	This	approach	was	later	generalized	to	RLC	circuits,	replacing	resistances	with	impedances.	In	1873	James	Clerk	Maxwell	provided	twice	this	analysis	node	analysis.
[14][15]	Maxwell	is	also	responsible	for	the	topological	theorem	according	to	which	the	determinant	of	the	node-admittance	matrix	is	equal	to	the	sum	of	all	the	admittance	products	of	the	trees.	In	1900	Henri	PoincarÃÂ©	introduced	the	idea	of	representing	a	for	its	incidence	matrix,[16]	thus	founding	the	field	of	algebraic	topology.	In	1916,	Oswald
Veblen	applied	PoincarÃ©	algebraic	topology	to	Kirchhoff	analysis.[17]	Veblen	was	also	responsible	for	introducing	the	spanning	tree	to	help	choose	a	compatible	set	of	network	variables.	[18]	Figure	2.1.	Circuit	diagram	of	a	low-pass	filter	ladder	network:	a	two-element	network	The	complete	cataloguing	of	network	graphs	as	they	apply	to	electrical
circuits	began	with	Percy	MacMahon	in	1891	(with	a	friendly	engineer	article	in	The	Electrician	in	1892)	who	limited	his	investigation	to	combining	series	and	parallel	actions.	MacMahon	called	these	charts	yoke-chains.[note	1]	Ronald	M.	Foster	in	1932	classified	charts	by	their	nullity	or	rank	and	provided	charts	for	all	those	with	a	small	number	of
nodes.	This	work	grew	from	an	earlier	survey	by	Foster	while	collaborating	with	George	Campbell	in	1920	on	4-door	phone	repeaters	and	producing	83,539	separate	charts.	[19]	For	a	long	time	topology	in	the	theory	of	electric	circuits	remained	interested	only	in	linear	passive	networks.	The	latest	developments	in	semiconductor	devices	and	circuits
have	required	new	topology	tools	to	address	them.	Enomial	increases	in	circuit	complexity	have	led	to	the	use	of	combinators	in	graph	theory	to	improve	the	efficiency	of	computer	computation.	[18]	Circuit	diagrams	and	diagrams	Figure	2.2.	Graph	of	the	stairway	network	shown	in	Figure	2.1	with	a	four-step	staircase	assumed.	Grids	are	commonly
classified	according	to	the	type	of	electrical	components	which	make	them	up.	In	a	circuit	diagram	these	elements	are	specifically	drawn,	each	with	its	own	unique	symbol.	Resistive	networks	are	monoelement-kind	networks,	which	consist	only	of	R-elements.Similarly,	capacitive	or	inductive	networks	are	one-element-type.	RC,	RL	and	LC	circuits	are
simple	two-element	networks.	The	RLC	circuit	is	the	simplest	three-element	network.	The	LC	ladder	network	commonly	used	for	low-pass	filters	may	have	many	elements,	but	it	is	another	example	of	a	two-element	network.	[20]	On	the	contrary,	topology	concerns	only	the	geometric	relationship	between	the	elements	of	a	network,	not	with	the	type	of
elements	themselves.	The	heart	of	a	topological	representation	of	a	network	is	the	network	graph.	Elements	are	represented	as	the	edges	of	the	graph.	A	border	is	drawn	like	a	line,	ending	on	points	or	small	circles	from	which	other	edges	(elements)	can	emanate.	In	circuit	analysis,	the	edges	of	the	graph	are	called	branches.	The	points	are	called	the
vertices	of	the	graph	and	represent	the	nodes	of	the	network.	Node	and	vertex	are	terms	that	can	be	used	interchangeably	when	talking	about	network	graphs.	Figure	2.2	shows	a	representation	of	the	circuit	diagram	in	the	2.1.[21]	Charts	used	in	grid	analysis	are	usually,	in	addition,	both	direct	charts,	to	capture	the	direction	of	current	flow	and
voltage,	and	labeled	charts,	to	capture	the	uniqueness	of	branches	and	nodes.	For	For	For	a	branch	square	chart	would	remain	the	same	topological	chart	if	two	branches	were	exchanged,	unless	the	branches	are	uniquely	labelled.	In	direct	graphs,	the	two	nodes	to	which	a	branch	connects	are	designated	as	the	source	node	and	the	destination	node.
Typically,	these	will	be	indicated	by	an	arrow	drawn	on	the	branch.[22]	Incidence	Main	article:	incidence	matrix	Incidence	is	one	of	the	fundamental	properties	of	a	graph.	An	edge	connected	to	a	vertex	is	said	to	incident	on	that	vertex.	The	incidence	of	a	graph	can	be	captured	in	matrix	format	with	a	matrix	called	the	incidence	matrix.	In	fact,	the
incidence	matrix	is	an	alternative	mathematical	representation	of	the	graph	that	eliminates	the	need	for	any	kind	of	drawing.	The	matrix	rows	correspond	to	the	nodes	and	the	matrix	columns	correspond	to	the	branches.	The	matrix	elements	are	zero,	for	no	incidence,	or	one,	for	incidence	between	the	node	and	the	branch.	Direction	in	oriented
graphs	is	indicated	by	the	element	sign.[18][23]	Equivalence	Graphs	are	equivalent	if	one	can	be	transformed	into	another	by	deformation.	Deformation	may	include	the	operations	of	translating,	rotating,	and	reflecting;	bending	and	stretching	branches;	and	crossing	or	knotting	branches.	Two	equivalent	deformation	graphs	are	called	congruent
graphs.[24]	In	the	field	of	electrical	grids,	there	are	two	other	transformations	that	are	believed	to	produce	equivalent	graphs	that	do	not	produce	congruent	graphs.	The	first	is	the	exchange	of	branches	connected	in	series.	This	is	the	double	exchange	of	parallel	connected	branches	which	can	be	achieved	by	deformation	without	the	need	for	a
particular	rule.	The	second	concerns	graphs	divided	into	two	or	more	separate	parts,	i.e.	a	graph	with	two	sets	of	nodes	that	have	no	ramifications	affecting	one	node	in	each	set.	Two	of	these	separate	parts	are	considered	a	graph	equivalent	to	one	in	which	the	parts	are	joined	by	combining	a	knot	of	each	into	a	single	knot.	Similarly,	a	graph	that	can
be	split	into	two	separate	parts	by	dividing	a	node	into	two	is	considered	equivalent.[25]	Trees	and	Links	Figure	2.3.	A	possible	tree	of	the	graph	in	Figure	2.2.	Links	are	shown	as	dashed	lines.	A	tree	is	a	graph	in	which	all	nodes	are	connected,	directly	or	indirectly,	by	branches,	but	without	forming	closed	loops.	Since	there	are	no	closed	rings,	there
are	no	currents	in	a	tree.	When	analyzing	the	network,	we	are	interested	in	the	extension	of	the	trees,	that	is,	the	trees	that	connect	every	node	in	the	network	graph.	In	this	article,	“non-qualified	shaft”	means	unless	otherwise	specified.	A	given	network	graph	can	contain	several	trees.	Branches	removed	from	a	graph	to	form	a	tree	are	called	links,
the	remaining	branches	in	the	tree	are	called	twigs.	For	a	graph	with	nodes,	the	of	branches	in	each	tree,	t,	must	be;	t	=	n	â¢¢¢¢	1	{\displaystyle	t=n-1\	}	An	An	AnThe	relationship	for	the	analysis	of	the	circuits	is;	b	=	«′	+	t	Â	{\displaystyle	b=\ell	+t\	}	where	b	is	the	number	of	branches	in	the	chart	and	â′′′	is	the	number	of	links	removed	to	form	the
tree.[26]	Tie	set	and	cutting	set	The	purpose	of	the	analysis	of	the	circuits	is	to	determine	all	currents	and	voltages	of	the	filiation	present	in	the	network.	These	network	variables	are	not	all	independent.	The	branching	voltages	are	connected	to	the	currents	by	the	transfer	function	of	the	elements	of	which	they	are	composed.	A	complete	solution	of
the	network	can	therefore	be	both	in	terms	of	current	branching	and	voltage	branching.	Neither	all	branching	currents	are	independent	of	each	other.	The	minimum	number	of	currents	required	for	a	complete	solution	is	l.	This	is	due	to	the	fact	that	a	tree	has	the	removed	rings	and	cannot	be	current	in	a	tree.	Since	the	remaining	branches	of	the	tree
have	zero	current,	they	cannot	be	independent	of	the	connecting	currents.	The	branching	currents	chosen	as	a	set	of	independent	variables	must	be	a	set	associated	with	the	bonds	of	a	tree:	you	cannot	arbitrarily	choose	any	branch	l.[27]	With	regard	to	branching	tensions,	a	complete	solution	of	the	network	can	be	obtained	with	the	branching
voltages	t.	This	is	a	consequence	of	the	fact	that	the	short	circuit	of	all	branches	of	a	tree	leads	to	zero	tension	everywhere.	Connection	tensions	cannot	therefore	be	independent	of	the	tensions	of	the	branches	of	the	tree.[28]	Figure	2.4.	A	figure	2.2	chart	cut	set	derived	from	the	figure	2.3	tree	by	cutting	the	branch	3.	A	common	approach	to	analysis
is	to	solve	for	cycle	currents	rather	than	branching	currents.	The	branching	currents	are	then	found	in	terms	of	ring	currents.	Again,	the	set	of	cycle	currents	cannot	be	arbitrarily	chosen.	To	ensure	a	set	of	independent	variables,	cycle	currents	must	be	those	associated	with	a	certain	set	of	cycles.	This	set	of	cycles	consists	of	those	formed	cycles	by
replacing	a	single	ring	of	a	given	circuit	chart	tree	to	be	analyzed.	Since	the	replacement	of	a	single	ring	in	a	tree	forms	exactly	one	ring,	the	number	of	ring	currents	so	defined	is	equal	to	l.	The	term	cycle	in	this	context	is	not	the	same	as	the	usual	cycle	term	in	graph	theory.	The	set	of	branches	forming	a	given	cycle	is	called	a	set	of	bonds.[note	2]
The	set	of	network	equations	is	formed	by	the	equation	of	loop	currents	to	the	algebraic	sum	of	the	branching	currents	of	the	ties	set.[29]	You	can	choose	a	set	of	independent	ring	currents	without	reference	to	the	trees	and	tie	sets.	A	sufficient	condition,	but	not	necessary,	for	the	choice	of	a	set	of	ringsis	to	ensure	that	each	selected	ring	includes	at
least	one	branch	not	previously	included	by	already	selected	rings.	A	particularly	simple	choice	is	the	one	used	in	mesh	analysis,	where	all	loops	are	selected	as	mesh.[note	3]	Mesh	analysis	can	only	be	applied	if	you	can	map	the	graph	to	a	plane	or	sphere	without	any	of	the	branches	crossing.	These	charts	are:	Planar	graphs.	The	ability	to	map	on	a
plane	or	a	sphere	is	equivalent.	Any	finished	graph	mapped	to	a	plane	can	be	shrunk	until	it	is	mapped	to	a	small	region	of	a	sphere.	In	contrast,	a	mesh	of	any	graph	mapped	to	a	sphere	can	be	stretched	as	long	as	the	space	inside	it	occupies	almost	the	entire	sphere.	The	whole	graph	thus	occupies	only	a	small	region	of	the	sphere.	This	is	the	same
as	in	the	first	case,	so	the	graph	will	also	map	to	a	plane.[30]	There	is	an	approach	to	choosing	network	variables	with	voltages	that	is	analogous	and	dual	to	the	loop	current	method.	Here	the	tension	associated	with	the	pairs	of	nodes	are	the	primary	variables	and	the	branch	voltages	are	located	in	terms	of	them.	Again,	you	must	choose	a	particular
tree	of	the	graph	to	ensure	the	independence	of	all	variables.	Double	the	set	of	ties	is	the	cutting	set.	A	set	of	ties	is	formed	allowing	all	links	in	the	chart	except	one	to	be	open	circuit.	A	cut	set	is	formed	allowing	all	branches	except	one	to	be	shorted.	The	cutting	set	consists	of	the	branch	of	the	shaft	that	has	not	been	shorted	and	any	of	the
connections	that	have	not	been	shorted	by	the	other	branches	of	the	shaft.	A	cut-out	set	of	a	graph	produces	two	disjointed	subgraphs,	that	is,	it	divides	the	graph	into	two	parts,	and	is	the	minimum	set	of	branches	needed	to	do	so.	The	set	of	lattice	equations	consists	of	the	equation	of	the	torque	voltages	of	the	nodes	to	the	algebraic	sum	of	the	cut
branch	voltages.[31]	Twice	the	special	case	of	mesh	analysis	is	nodal	analysis.[32]	Nullity	and	rank	The	nullity,	N,	of	a	graph	with	s	separate	parts	and	b	branches	is	defined	by:	N	=	b	Ã¢Â¢Â¢	n	+	s	Ã	̈	{\displaystyle	N=b-n+s\	}	The	nullity	of	a	graph	represents	the	number	of	degrees	of	freedom	of	its	set	of	network	equations.	For	a	planar	graph,
nullity	is	equal	to	the	number	of	meshes	in	the	graph.[33]	The	rank,	R	of	a	graph	is	defined	by;	R	=	n	Ã¢Â¢	s	Ã	̈	{\displaystyle	R=n-s\	}	Rank	plays	the	same	role	in	node	analysis	as	nullity	in	mesh	analysis.	That	is,	it	provides	the	number	of	node	tension	equations	needed.	R	+	N	=	b	is	{\displaystyle	R+N=b\	}	Resolving	Network	Variables	Once	a	set	of
geometrically	independent	variables	is	selected,	the	state	of	the	network	is	expressed	in	terms	of	them.	The	result	is	a	set	of	independent	linear	equations	that	must	be	solved	simultaneously	to	find	the	values	of	the	network	variables.	This	set	of	equations	can	be	expressed	in	a	matrix	format	that	leads	to	a	matrix	of	parameters	characteristic	for	the
network.	Parametric	matrices	take	the	form	of	an	impedance	matrix	if	the	equations	have	been	formed	on	the	basis	of	cycle	analysis,	or	an	admission	matrix	if	the	equations	have	been	formed	on	the	basis	of	cycle	analysis.	based	on	node	analysis.[35]	These	equations	can	be	solved	in	many	well-known	ways.	One	method	is	the	systematic	elimination	of
variables.[36]	Another	method	involves	the	use	of	determinants.	This	is	known	known	known	Cramer’s	rule	and	provides	a	direct	expression	for	the	unknown	variable	in	terms	of	determinants.	This	is	useful	as	it	provides	a	compact	expression	for	the	solution.	However,	for	something	more	than	the	trivial	networks,	you	need	more	computation	effort
for	this	method	when	working	manually.	[37]	Duality	Two	graphs	are	dual	when	the	ratio	between	branches	and	pairs	of	nodes	in	one	is	the	same	as	the	ratio	between	branches	and	loops	in	the	other.	The	double	of	a	graph	can	be	found	entirely	with	a	graphical	method.	[38]	Double	a	graph	is	another	graph.	For	a	given	tree	in	a	graph,	the
complementary	set	of	branches	(that	is,	branches	not	in	the	tree)	form	a	tree	in	the	double	graph.	The	set	of	current	loop	equations	associated	with	the	tie	sets	of	the	original	chart	and	the	shaft	are	identical	to	the	set	of	tension	node-pair	equations	associated	with	the	cut	sets	of	the	dual	chart.	[39]	The	following	table	lists	dual	concepts	in	topology
related	to	circuit	theory.	[40]	Figure	2.5	The	Double	Graph	of	the	Graph	in	Figure	2.2	Summary	of	the	Two	Concepts	Current	Voltage	Tree	Maze	Branch	Mesh	Node	Loop	Node	Couple	Node	Link	Tree	Branch	Ties	Set	Cutting	Short	Circuit	Open	Circuit	Parallel	Connection	Nullity	Rank	Series	Double	a	tree	is	sometimes	called	a	labyrinth	[note	4]	It
consists	of	spaces	connected	by	ties	in	the	same	way	that	the	tree	consists	of	nodes	connected	by	branches	of	the	tree.	[41]	Doubles	cannot	be	formed	for	every	graph.	Duality	requires	each	set	of	ties	to	have	a	double	cut	set	in	the	double	chart.	This	condition	is	satisfied	if	and	only	if	the	graph	is	mapable	to	a	sphere	without	branches	crossing.	To	see
this,	note	that	a	set	of	ties	you	need	to	“tie	off”	a	chart	into	two	portions	and	its	double,	the	cut	set,	you	need	to	cut	a	chart	into	two	portions.	The	graph	of	a	finite	network	that	does	not	map	to	a	sphere	will	require	an	n-fold	bull.	A	set	of	ties	that	goes	through	a	hole	in	a	bull	will	fail	to	tie	the	chart	into	two	parts.	As	a	result,	the	double	chart	will	not
be	cut	into	two	parts	and	will	not	contain	the	required	cutting	set.	Therefore,	only	planar	graphs	have	doubles.	[42]	Even	Duals	cannot	be	formed	for	networks	containing	reciprocal	inductances	since	there	is	no	corresponding	capacitive	element.	Equivalent	circuits	can	be	developed	that	have	duals,	but	the	dual	cannot	be	formed	directly	from	a
mutual	inductance.	[43]	The	node	and	mesh	removal	operations	on	a	series	of	grid	equations	have	a	topological	meaning	that	can	help	visualize	what	is	happening.	The	elimination	of	a	node	voltage	from	a	set	of	lattice	equations	corresponds	topologically	to	the	elimination	of	that	node	from	the	graph.	For	a	node	connected	to	three	other	nodes,	this
corresponds	to	the	well	Y-I	transformation.	The	transformation	can	be	extended	to	a	greater	number	of	connected	nodes	and	is	then	known	as	the	star-mesh	transformation.	[44]	The	inverse	of	this	transformation	is	the	Î-Y	transformation,	which	analytically	corresponds	to	the	elimination	of	a	network	current	topologically	corresponds	to	the
elimination	of	a	mesh.	However,	removing	a	mesh	stream	whose	mesh	has	branches	in	common	with	an	arbitrary	number	of	other	meshes	will	generally	not	lead	to	a	workable	graph.	This	is	because	the	graph	of	the	transformation	of	the	general	star	is	a	graph	that	does	not	map	to	a	sphere	(contains	stellar	polygons	and	thus	multiple	crosses).	The
double	of	such	a	graph	cannot	exist,	but	it	is	the	graph	required	to	represent	a	generalized	elimination	of	the	mesh.[44]	Reciprocal	coupling	Figure	2.6.	Dual	tuning	circuit	often	used	to	pair	tuned	amplifier	stages.	A,	the	graph	of	the	double-adjustment	circuit.	B,	an	equivalent	graph	with	the	disjointed	parts	combined.	In	conventional	circuit	graphics,
there	is	no	way	to	explicitly	represent	reciprocal	inductive	couplings,	as	in	a	transformer,	and	such	components	may	result	in	a	disconnected	graph	with	more	than	one	separate	part.	For	ease	of	analysis,	a	graph	with	multiple	parts	can	be	combined	into	a	single	graph	by	unifying	a	node	for	each	part	into	a	single	node.	This	does	not	change	the
theoretical	behavior	of	the	circuit,	so	the	analysis	performed	on	it	is	still	valid.	However,	if	a	circuit	were	made	this	way,	it	would	make	a	practical	difference,	as	it	would	destroy	the	isolation	between	the	parts.	An	example	could	be	a	grounded	transformer	on	both	the	primary	and	secondary	sides.	The	transformer	still	functions	as	a	transformer	with
the	same	voltage	ratio,	but	can	no	longer	be	used	as	an	insulation	transformer.[45]	Newer	techniques	in	graph	theory	are	able	to	treat	active	components,	which	are	also	problematic	in	conventional	theory.	These	new	techniques	are	also	able	to	deal	with	reciprocal	couplings.[46]	Active	Components	There	are	two	basic	approaches	available	for
dealing	with	reciprocal	couplings	and	active	components.	In	the	first	of	these,	Samuel	Jefferson	Mason	introduced	signal	flow	graphs	in	1953.	Signal	flow	charts	are	weighted	and	direct	charts.	He	used	them	to	analyze	circuits	containing	reciprocal	couplings	and	active	networks.	The	weight	of	an	oriented	edge	in	these	charts	represents	a	gain,	like
that	possessed	by	an	amplifier.	In	general,	signal	flow	graphs,	unlike	the	regular	oriented	graphs	described	above,	do	not	correspond	to	the	topology	of	the	physical	arrangement	of	the	components.[46]	The	second	approach	is	to	extend	the	classic	method	to	include	reciprocal	couplings	and	active	components.	Various	methods	have	been	proposed	for
this	purpose.	In	one	of	these	two	graphs	are	constructed,	one	representing	the	currents	in	the	circuit	and	the	other	representing	the	voltages.	Passive	components	will	have	identical	branches	in	both	trees,	but	the	Active	might	not	be.	The	method	is	based	on	identifying	trees	that	cover	both	graphs.	An	alternative	method	to	extend	the	classic	one-
graphic	approach	was	proposed	by	Chen	in	1965.[note	5]	It	is	based	on	a	rooted	tree.[46]	Hypergraphs	Another	way	to	extend	classical	graph	theory	to	active	components	is	through	the	use	of	hypergraphs.	Some	electronic	components	are	not	graphically	represented.	The	transistor	has	three	connection	points,	but	a	normal	graphics	branch	can	only
connect	to	two	nodes.	Modern	integrated	circuits	have	many	more	connections	than	this.	This	problem	can	be	solved	by	using	hypergraphs	instead	of	regular	graphs.[48]	Figure	2.7.	An	example	of	hypergraphy.	Regular	edges	are	shown	in	black,	hyperedges	in	blue	and	tentacles	in	red.	In	a	conventional	representation	the	components	are	represented
by	edges,	each	of	which	connects	to	two	nodes.	In	a	hypergraph,	the	components	are	represented	by	hyperedges	that	can	connect	to	an	arbitrary	number	of	nodes.	Hyperboards	have	tentacles	that	connect	the	hyperboard	to	the	knots.	The	graphic	representation	of	a	hyperedge	can	be	a	square	(compared	to	the	edge	which	is	a	line)	and	the
representations	of	its	tentacles	are	lines	from	the	square	to	the	connected	nodes.	In	a	direct	hypergraphy,	the	tentacles	bear	labels	determined	by	the	hyperboard	label.	A	conventional	oriented	graph	can	be	thought	of	as	a	hypergraph	with	hyperedges	each	of	which	has	two	tentacles.	These	two	tentacles	are	indicated	as	source	and	target	and	are
usually	indicated	by	an	arrow.	In	a	general	hypergraphy	with	multiple	tentacles,	more	complex	labelling	will	be	required.[49]	Hypergraphs	can	be	characterized	by	their	incidence	matrices.	A	regular	graph	containing	only	two	terminal	components	will	have	exactly	two	non-zero	elements	in	each	row.	Any	incidence	matrix	with	more	than	two	non-zero
values	in	each	row	is	a	representation	of	a	hypergraph.	The	number	of	non-zero	voices	in	a	row	is	the	rank	of	the	corresponding	branch,	and	the	highest	rank	is	the	rank	of	the	incidence	matrix.[50]	Non-homogeneous	Variables	Classical	grid	analysis	develops	a	set	of	grid	equations	whose	grid	variables	are	homogeneous	in	both	current	(cycle
analysis)	and	voltage	(cycle	analysis).	knots).	The	set	of	lattice	variables	thus	found	is	not	necessarily	the	minimum	necessary	to	form	a	set	of	independent	equations.	There	may	be	a	difference	between	the	number	of	variables	in	a	loop	analysis	and	that	of	a	node.	In	some	cases	the	minimum	possible	number	may	be	less	than	one	of	these	two	values	if
the	requirement	of	homogeneity	is	attenuated	and	a	combination	of	current	and	voltage	variables	is	allowed.	A	finding	of	Kishi	and	Katajini	in	1967[note	6]	is	that	the	absolute	minimum	number	of	variables	needed	to	describe	the	behavior	of	the	network	is	given	by	the	maximum	distance[note	7]	between	two	forests	extending[note	8]	of	the	network
plot.[46]	Network	Synthesis	Graph	theory	can	be	applied	to	the	synthesis	of	network.	The	summary	of	the	network	realizes	the	required	network	in	one	of	the	canonical	forms.	Examples	of	canonical	forms	are	the	realization	of	a	guide	point	impedance	by	the	network	of	canonical	staircases	of	Cauer	Cauer	Foster's	canonical	form	or	Brune's	realization
of	an	imitation	from	his	positive-real	functions.	Topologic	methods,	on	the	other	hand,	do	not	start	from	a	canonical	form.	Rather,	form	is	the	result	of	mathematical	representation.	Some	canonical	forms	require	reciprocal	inductances	for	their	realization.	An	important	goal	of	topological	methods	of	network	synthesis	was	to	eliminate	the	need	for
these	common	inductions.	A	theorem	to	get	out	of	topology	is	that	a	realization	of	a	driving	impedance	without	reciprocal	couplings	is	minimal	if	and	only	if	there	are	no	all-inductor	loops	or	all-capacitor.	[51]	The	chart	theory	is	at	its	most	powerful	in	network	synthesis	when	network	elements	can	be	represented	by	real	numbers	(networks	of	a	type-
element	as	resistive	networks)	or	binary	states	(such	as	switching	networks).	[46]	Infinite	Networks	Perhaps,	the	first	network	with	an	infinite	graph	to	study	was	the	network	of	scales	used	to	represent	the	transmission	lines	developed,	in	its	final	form,	by	Oliver	Heaviside	in	1881.	Certainly	all	the	first	studies	of	endless	networks	have	been	limited	to
periodic	structures	such	as	scales	or	grids	with	the	same	repeated	elements	more	and	more	times.	It	was	not	until	the	end	of	the	20th	century	that	the	tools	to	analyze	endless	networks	with	arbitrary	topology	became	available.	[52]	The	infinite	networks	are	largely	only	of	theoretical	interest	and	are	the	game	of	mathematicians.	The	infinite	networks
that	are	not	bound	by	real	world	restrictions	can	have	some	very	infisical	properties.	For	example,	Kirchhoff's	laws	may	fail	in	some	cases	and	infinite	resistance	scales	can	be	defined	that	they	have	a	driving	point	impedance	that	depends	on	infinite	resolution.	Another	inphysical	property	of	infinite	theoretical	networks	is	that,	in	general,	they	will
disperse	infinite	power,	unless	they	are	placed	constraints	on	them	as	well	as	the	usual	network	laws	such	as	the	laws	of	Ohm	and	Kirchhoff.	There	are,	however,	some	real-world	applications.	The	example	of	the	transmission	line	is	one	of	a	class	of	practical	problems	that	can	be	shaped	by	infinitesimal	elements	(the	distributed	element	model).	Other
examples	are	launching	waves	in	a	continuous	medium,	crushing	field	problems,	and	resistance	measurement	between	points	of	a	substrate	or	down	a	hole.	[53]	Transfinite	networks	further	extend	the	idea	of	endless	networks.	A	knot	at	the	end	of	an	infinite	network	can	have	another	branch	connected	to	it	leading	to	another	network.	This	new
network	can	be	infinite.	Thus,	topologies	can	be	built	which	have	pairs	of	nodes	without	path	ended	between	them.	Such	networks	of	infinite	networks	are	called	transfinite	networks.	[54]	Notes	Yoke-chains.	A	terminology	coined	by	Arthur	Cayley.	The	Yokes	are	branches	in	parallel,	the	chains	are	branches	in	series.(MacMahon,	1891,a	single	branch
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